"Uncovering deformation mechanism of nanostructured materials"

K.J. Hemker (PI), En Ma, J.F. Molinari, Johns Hopkins University, Grant No. DMR0210215

Twinning in Nanocrystalline Aluminum

- First experimental observations of deformation twins and stacking faults in 10-20 nm grains of plastically deformed nanocrystalline aluminum. Twins are not observed in coarsegrained pure aluminum and can be directly related to the nanocrystalline structure.
- These TEM observations confirm theoretical (MD) predictions and have implications for interpreting the unusual mechanical behavior of nanocrystalline materials.
- Dislocation-based model developed to explain the transition from normal slip to partial dislocation controlled deformation mechanisms when a grain size decreases to tens of nanometers.

Chen, Ma, Hemker, Sheng, Wang, Cheng "Deformation Twinning in Nanocrystalline Aluminum", Science, **300** (2003) 1275-1277.

"Uncovering deformation mechanism of nanostructured materials"

K.J. Hemker (PI), En Ma, J.F. Molinari, Johns Hopkins University, Grant No. DMR0210215

- Research Objectives:
 - One-step processing (vapor deposition) of nanocrystalline films.
 - Microsample tensile testing of nanocrystalline films.
 - In situ TEM observations of deformation mechanisms.
 - FE modeling with realistic grain size variations and observed deformation mechanisms.

"Uncovering deformation mechanism of nanostructured materials" Grant No. DMR0210215

- Core Faculty: K.J. Hemker (PI), J.F. Molinari and En Ma
- Research Scientist:
 Mingwei Chen (partial support)
- **Post-doctoral Fellow:** Fred Mompiou (6/04)
- Graduate Students:
 Dan Gianola, Derek Warner
- Undergraduates: to be recruited
- International Collaborators:
 Legros, CEMES/CNRS Toulouse France,
 Forest and Saintier, Ecole des Mines de Paris

